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Dispersive perturbations of optical solitons
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The precise manner in which radiation disperses away from a soliton in an optical fiber is a topic attracting
current attention. The purpose of this paper is to emphasize that there exists a well-developed formalism
derived from inverse scattering theory, which has ready application to this problem for the case when the
radiation in question forms part of the input pulse to the fiber.
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In a recent article, Haus, Wong, and Khatri@1# analyzed
the continuum generated by input pulses to a fiber co
sponding to a perturbed soliton state, and discussed the
sequent evolution of the radiation as the composite pu
propagated down the fiber. This work extended previous
sults obtained by Gordon@2#. Their main tool was the use o
an adjoint function, obtained from the nonlinear Schro¨dinger
equation~NLS!, perturbed about the soliton state. Howev
there is no demonstration that these adjoint functions
complete~actually, they are not! and they have the unfortu
nate property that the orthogonality condition satisfied
them requires only that thereal part of an integral over the
inner product of the adjoint function with its conjuga
should bed correlated in terms of a spectral parameterV.
The reason for this undesirable property is that the adj
states introduced by the authors, though close, are not q
the right set of basis states to use.

It is our objective here to point out that an appropriate
of basis states already exists for such an analysis, an
emphasize that such states are complete, and are pro
orthogonal; these are the squared eigenstates of the scat
problem associated with the NLS, as first analyzed by Ka
@3#. We take the NLS in the form

iqx2qtt22ququ250 ~1!

with the single-soliton solution

qs5exp~2 ix !secht ~2!

corresponding to an appropriate choice of~complex! eigen-
parameterz15j11 ih1 ~specifically,j150 and 2h151!. In
Eq. ~1!, a suffix denotes a partial derivative andq is the
complex amplitude; all quantities appear in normalized for
As it is well known, Eq. ~1! can be solved using th
Zakharov-Shabat scattering problem@4#, where the two com-
ponent Jost functionsf, f̄, c, and c̄ are introduced and
defined.

Kaup first introduced thesquared eigenfunctions

C5Fc1
2~ t,z!

c2
2~ t,z!G , C̃5F c̄1

2~ t,z!

c̄2
2~ t,z!

G , ~3!
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F5F f2
2~ t,z!

2f1
2~ t,z!G , F̃5F f̄2

2~ t,z!

2f̄1
2~ t,z!

G , ~4!

wherec1 , c2 are the components of the Jost functionc, etc.,
and demonstrated that these were orthogonal, in the s
that

E
2`

1`

FT~ t,j8!C~ t,j!dt52pa2~j!d~j2j8!, ~5!

E
2`

1`

F̃T~ t,j8!C~ t,j!dt50, ~6!

E
2`

1`

FT~ t,j8!C̃~ t,j!dt50, ~7!

E
2`

1`

F̃T~ t,j8!C̃~ t,j!dt5pā2~j!d~j2j8!. ~8!

Here, z5jPR, and a, ā, b, and b̄ are scattering data, de
fined through the relationships betweenf, f̄ andc, c̄ in the
usual way:

f5ac̄1bc, ~9a!

f̄52āc1b̄c̄. ~9b!

Kaup also derived a completeness relation for these eig
states, permitting, among other things, the potentials to
expressed in terms of integrals over the scattering d
which can be inverted to give a reciprocal relationship
stated below.

Suppose now that the soliton input is perturbed so tha
pulseq5qs1dq is inserted into the fiber. Then, the presen
of dq will do two things: it will modify the soliton eigenpa-
rameterz1 , and it will result in a continuum contribution
dqc accompanying the modified soliton into the fiber. Ev
dently,dqc5dq1qs2q̃s , whereq̃s is the soliton state at the
appropriately modified soliton parameter. It is straightfo
ward to show that@5–7#

dqc5dq1 iatqs2b~ tqs!8, ~10!

where8 denotes]/]t, anda andb are defined by
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a5E
2`

1`

Im$dq%qs8dt, ~11!

b5E
2`

1`

Re$dq%qsdt. ~12!

Here Re$dq% and Im$dq% are the real and imaginary parts
dq. Thetransformrelation between the potentialdqc and the
scattering data, obtained from the completeness propertie
the above product states, is

F2dqc*
dqc

G5
1

p E
2`

1`S b

ā
F̃~ t,j!1

b̄

a
F~ t,j! D dj ~13!

which, on using Eqs.~5!–~8!, is easily inverted to give

b̄a5E
2`

1`

@2dqc* ,dqc#C~ t,j!dt ~14!

with a similar result forbā.
Note, that the squared eigenstates now play the role of

exponentials in linear Fourier transforms, and also that b
dqc anddqc* appear in Eq.~14!, unlike a similar statement in
Ref. @1# where only dqc appears, a consequence of t
choice of adjoint functions.

We conclude with two comments. The connection b
tween the scattering datab̄ and the associate fieldf first
introduced by Gordon is discussed in Ref.@8#, where it is
shown that

F$ f %5
b̄~j,x!

4j211
, ~15!

whereF$ f %5*2`
1` exp(2ijt)f(t)dt is the Fourier transform o

f.
Also, the appropriate forms for the componentsc1 , c2 ,

anda(j), which appear in Eq.~14!, for the real eigenparam
eterj, are
B
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c152
i

2j1 i
exp~ i jt !secht, ~16!

c25
1

2j1 i
exp~ i jt !~2j1 i tanht !, ~17!

a5
2j2 i

2j1 i
. ~18!

Moreover,ā5a* and b̄5b* . In conclusion, we have dem
onstrated a systematic way in which the radiation field
companying the soliton on input to a fiber can be analyz
utilizing the squared eigenfunctions encountered in inve
scattering theory. These are the natural basis states to us
complete, are orthogonal, and are the natural extension
the simple exponential kernel encountered in linear tra
form theory. A given choice fordq at x50 results in an
appropriate dqc using Eq. ~10!, which then determines

b̄(j,0) through Eq.~14!. Evolution of b̄ in x is trivial:
b̄(j,x)5b̄(j,0)exp(24ij2x), which on substitution back into
Eq. ~13!, then determinesdq(t,x) ~at least in principle!. A
similar statement holds true for the vector problem: co
pleteness of a set of product states for the Manakov sys
has been demonstrated, leading to results for the vector
dqc similar in spirit to Eqs.~13! and ~14! above@9#. These
results will be discussed elsewhere.

In summary, the precise manner in which radiation d
perses away from an optical soliton in an optical fiber is b
examined using Eqs.~13! and~14!. These equations define
natural mathematical framework for such studies and are,
believe, superior to a similar set recently reported in Ref.@1#.
Moreover, these equations are the natural extensions
similar set of relations found in the application of Fouri
theory to linear systems; the only difference is that the k
nels exp(ivt) for the continuum states are now ‘‘dressed’’ b
the presence of a soliton, resulting in modified kernels s
as appear in Eqs.~13! and ~14!.
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