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Dispersive perturbations of optical solitons
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The precise manner in which radiation disperses away from a soliton in an optical fiber is a topic attracting
current attention. The purpose of this paper is to emphasize that there exists a well-developed formalism
derived from inverse scattering theory, which has ready application to this problem for the case when the
radiation in question forms part of the input pulse to the fiber.
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In a recent article, Haus, Wong, and Khdtti analyzed 24 B2t
. : \ #5(t,0) ~ | #3(1,0)
the continuum generated by input pulses to a fiber corre- b= Lol =l = , (4)
sponding to a perturbed soliton state, and discussed the sub- $1(t.d —¢1(t,0)

sequent evolution of the radiation as the composite pulse .
propagated down the fiber. This work extended previous re\N€ré¥1, ¥, are the components of the Jost functigretc.,
sults obtained by Gordofi2]. Their main tool was the use of and demonstrated that these were orthogonal, in the sense
an adjoint function, obtained from the nonlinear Sclinger that
equation(NLS), perturbed about the soliton state. However,
there is no demonstration that these adjoint functions are f
complete(actually, they are ngtand they have the unfortu-
nate property that the orthogonality condition satisfied by
them requires only that theeal part of an integral over the
inner product of the adjoint function with its conjugate
should beé correlated in terms of a spectral parameger
The reason for this undesirable property is that the adjoint +o _
states introduced by the authors, though close, are not quite f OT(t,&)W(t,£)dt=0, (7)
the right set of basis states to use. o

It is our objective here to point out that an appropriate set
of basis states already exists for such an analysis, and to f
emphasize that such states are complete, and are properly
orthogonal; these are the squared eigenstates of the scattering _ o
problem associated with the NLS, as first analyzed by Kaupere, {=¢€ R, anda, a, b, andb are scattering data, de-

[3]. We take the NLS in the form fined through the relationships betwegne andy,  in the
usual way:
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with the single-soliton solution ¢=ay+by, (%3

qs=exp —ix)secht 2 b= —ay+by. (9b)

corresponding to an appropriate choice(@dmpley eigen-  Kaup also d(_erived a completeness_ relation for the;e eigen-
parameter, =&, +i 7, (specifically,£&,=0 and 27,=1). In  States, permlttlng, among other things, the potentlgls to be
Eq. (1), a suffix denotes a partial derivative andis the expressed in terms of integrals over the scattering data,
complex amplitude; all quantities appear in normalized formWhich can be inverted to give a reciprocal relationship as
As it is well known, Eq.(1) can be solved using the Stated below. - _

Zakharov-Shabat scattering probl4j, where the two com- Suppose now that the soliton input is perturbed so that a

; ; pulseq=qs+ &q is inserted into the fiber. Then, the presence
Sggﬁgé Jost functionsb, ¢, ¢, and ¢ are introduced and of 8q will do two things: it will modify the soliton eigenpa-

rameter{,, and it will result in a continuum contribution

Kaup first introduced thequared eigenfunctions . . ; . X .
up irst . au 'geniunctl 4q. accompanying the modified soliton into the fiber. Evi-

J2(t,0) Ez(t 0) dently, q.= 69+ gs— s, Whereqs is the soliton state at the
p=| 3" } T = _; ’ } (3)  appropriately modified soliton parameter. It is straightfor-
(9] ¥5(,0) ward to show thaf5—7]
8q.= 6q+iatgs— B(tqs)’, (10
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+ o0 |
a=f Im{5q}qg.dt, (11 U=- ET] exp(i &t)secht, (16)
+oo 1 . .
B= f_m Re{ 5g}qdt. (12) ¢2_2§+i exp(iét)(2&+i tanht), (17)
Here R¢&q} and In{&q} are the real and imaginary parts of a= @ (18)
59. Thetransformrelation between the potentiéty, and the 2&+i
scattering data, obtained from the completeness properties of — — )
the above product states, is Moreover,a=a* andb=b*. In conclusion, we have dem-

onstrated a systematic way in which the radiation field ac-

_sa*] 1 (+=[b b companying the soliton on input to a fiber can be analyzed
5 e | _J (=?I>(t,§)+ —d(t,&) |d¢ (13  utilizing the squared eigenfunctions encountered in inverse
Qe )= \8 a scattering theory. These are the natural basis states to use, are

_ _ _ o _ complete, are orthogonal, and are the natural extensions of
which, on using Eqs(5)—(8), is easily inverted to give the simple exponential kernel encountered in linear trans-
form theory. A given choice fosq at x=0 results in an

o too i . . .
bazf [ 8q7 ,5q.]W (¢, £)dt (14) ippropnate 89, using Eq. (10),. Whlch_then ('deterrr.unes
—o b(¢£,0) through Eq.(14). Evolution of b in X is trivial:
. o _ b(&,x) =b(£,0)exp(4i&x), which on substitution back into
with a similar result forba. Eq. (13), then determinesq(t,x) (at least in principlg A

Note, that the squared eigenstates now play the role of thgimilar statement holds true for the vector problem: com-
exponentials in linear Fourier transforms, and also that bO”ﬁbleteness of a set of product states for the Manakov system
89 andsqg appear in Eq(14), unlike a similar statementin  has been demonstrated, leading to results for the vector field
Ref. [1] where only 5q. appears, a consequence of the sq. similar in spirit to Eqgs.(13) and (14) above[9]. These
choice of adjoint functions. results will be discussed elsewhere.

We conclude with two comments. The connection be- |n summary, the precise manner in which radiation dis-
tween the scattering data and the associate fielfl first  perses away from an optical soliton in an optical fiber is best
introduced by Gordon is discussed in RES], where it is  examined using Eq$13) and(14). These equations define a

shown that natural mathematical framework for such studies and are, we
believe, superior to a similar set recently reported in RH.
b(&,%) Moreover, these equations are the natural extensions of a
FHf}= m (15 similar set of relations found in the application of Fourier

theory to linear systems; the only difference is that the ker-
nels expiwt) for the continuum states are now “dressed” by
the presence of a soliton, resulting in modified kernels such
as appear in Eqg13) and(14).

where F{f}=[TZ exp(d&)f(t)dt is the Fourier transform of
f.

Also, the appropriate forms for the componeuits, ¢,
anda(¢), which appear in Eq.14), for the real eigenparam- One of the authorgT.P.H) is pleased to acknowledge
eter¢, are support in the form of an award from EPSRC.
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